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Abstract: One of the hot topics discussed recently in relation to pattern recognition techniques is the question of ac-
tual performance of modern feature selection methods. Feature selection has been a highly active area of
research in recent years due to its potential to improve boththe performance and economy of automatic deci-
sion systems in various applicational fields, with medical diagnosis being among the most prominent. Feature
selection may also improve the performance of classifiers learned from limited data, or contribute to model
interpretability. The number of available methods and methodologies has grown rapidly while promising
important improvements. Yet recently many authors put thisdevelopment in question, claiming that simpler
older tools are actually better than complex modern ones – which, despite promises, are claimed to actually fail
in real-world applications. We investigate this question,show several illustrative examples and draw several
conclusions and recommendations regarding feature selection methods’ expectable performance.

1 INTRODUCTION

Dimensionality reduction (DR) concerns with the task
of finding low dimensional representation for high di-
mensional data. DR is an important step in data pre-
processing in pattern recognition applications. It is
sometimes the case that such tasks as classification of
the data represented by so called feature vectors, can
be carried out in the reduced space more accurately
than in the original space. There are two main ways
of doing DR depending on the resulting features: DR
by feature selection(FS) and DR byfeature extrac-
tion (FE). The FS approach does not attempt to gen-
erate new features, but tries to select the “best” ones
from the original set of features. The FE approach
defines a new feature vector space in which each new
feature is obtained by transformations of the original
features. FS leads to savings in measurement cost
and the selected features retain their original physi-
cal interpretation, important e.g., in medical applica-
tions. On the other hand, transformed features gener-
ated by FE may provide a better discriminative abil-
ity than the best subset of given features, but these
new features may not have a clear physical mean-

ing. A typical feature selection process consists of
four basic steps:feature subset selection, feature sub-
set evaluation, stopping criterion, andresult valida-
tion. Based on theselection criterionchoice, feature
selection methods may roughly be divided into three
types: thefilter (Yu and Liu, 2003; Dash et al., 2002),
thewrapper(Kohavi and John, 1997) and thehybrid
(Das, 2001; Sebban and Nock, 2002; Somol et al.,
2006). The filter model relies on general characteris-
tics of the data to evaluate and select feature subsets
without involving any mining algorithm. The wrapper
model requires one predetermined mining algorithm
and uses its performance as the evaluation criterion. It
attempts to find features better suited to the mining al-
gorithm aiming to improve mining performance. This
approach tends to be more computationally expensive
than the filter approach. The hybrid model attempts
to take advantage of the two approaches by exploiting
their different evaluation criteria in different search
stages. The hybrid approach is recently proposed to
handle large datasets.

In recent years FS seems to have become a
topic attracting an increasing number of researchers.
Among the possible reasons the main one is certainly
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the importance of FS (or FE) as an inherent part of
classification or modelling system design. Another
reason, however, may be the relatively easy acces-
sibility of the topic to the general research commu-
nity. Apparently, many papers have been published
in which any substantial advance is difficult to iden-
tify. One is tempted to say that the more papers on FS
that are published, the fewer important contributions
actually appear.

Certainly many key questions remain unanswered
and key problems remain unsolved to satisfaction. For
example, not enough is known about error bounds
of many popular feature selection criteria, especially
about their relation to classifier generalization per-
formance. Despite the huge number of methods in
existence, it is still a very hard problem to perform
FS satisfactorily, e.g., in the context of gene expres-
sion data, with enormous dimensionality and very few
samples. Similarly, in text categorization the standard
way of FS is to completely omit context information
and to resort to much more limited FS based on indi-
vidual feature evaluation. In medicine these problems
tend to become emphasized, as the available datasets
are often incomplete (missing feature values in sam-
ple vectors), continuous and categorical data is to be
treated at once, and the notion of feature itself may be
difficult to interpret.

Among many criticisms of the current FS devel-
opment there is one targeted specifically at the ef-
fort of finding more effective search methods, capa-
ble of yielding results closer to optimum with re-
spect to some chosen criterion. The key argument
against such methods is their alleged tendency to
“over-select” features, or to find feature subsets fitted
too tightly to training data, what degrades generaliza-
tion. In other words, more search-effective methods
are supposed to cause a similar unwanted effect as
classifier over-training. Indeed, this is a serious prob-
lem that requires attention.

In recent literature the problem of “over-effective”
FS has been addressed many times (Reunanen, 2003;
Raudys, 2006). Yet, the effort to point out the prob-
lem (which seems to have been ignored, or at least in-
sufficiently addressed before) now seems to have led
to the other extreme notion of claiming that most of
FS method development is actually contra-productive.
This is, that older methods are actually superior to
newer methods, mainly due to better over-fitting re-
sistance.

The purpose of this paper is to discuss the issue
of comparing actual FS methods’ performance and to
show experimentally what impact of the more effec-
tive search in newer methods can be expected.

1.1 FS Methods Overview

Before giving overview of the main methods to be dis-
cussed further we should note that it is not generally
agreed in literature what the term “FS method” does
actually describe. The term “FS method” is equally
often used to refer to a) the complete framework that
includes everything needed to select features, or b)
the combination of search procedure and criterion or
c) just the bare search procedure. In the following we
will focus mainly on comparing the standard search
procedures, which are not criterion- or classifier de-
pendent. The widely known representatives of such
“FS methods” are:

• Best Individual Features (IB) (Jain et al., 2000),

• Sequential Forward Selection (SFS), Sequential
Backward Selection (SBS), (Devijver and Kittler,
1982),

• “Plus l -take awayr” Selection (+L-R) (Devijver
and Kittler, 1982),

• Sequential Forward Floating Selection (SFFS),
Sequential Backward Floating Selection (SFBS)
(Pudil et al., 1994),

• Oscillating Search (OS) (Somol and Pudil, 2000).

Many other methods exist (in all senses of the term
“FS Method”), among others generalized versions of
the ones listed above, various randomized methods,
methods related to use of specific tools (FS for Sup-
port Vector Machines, FS for Neural Networks) etc.
For overview see, e.g., (Jain et al., 2000; Liu and
Yu, 2005). The selection of methods we are going to
investigate is motivated by their interchangeability –
any one of them can be used with the same given cri-
terion, data and classifier. This makes experimental
comparison easier.

2 PERFORMANCE ESTIMATION
PROBLEM

FS methods comparison seems to be understood am-
biguously as well. It is very different whether we
compare concrete method properties or the final clas-
sifier performance determined by use of particular
methods under particular settings. Certainly, final
classifier performance is the ultimate quality measure.
However, misleading conclusions about FS may be
easily drawn when evaluating nothing else, as classi-
fier performance depends on many more different as-
pects then just the actual FS method used. Neverthe-
less, in the following we will adapt classifier accuracy
as the main means of FS method assessment.
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There seems to be a general agreement in the liter-
ature that wrapper-based FS enables creation of more
accurate classifiers than filter-based FS. This claim is
nevertheless to be taken with caution, while using ac-
tual classifier accuracy as the FS criterion in wrapper-
based FS may lead to the very negative effects men-
tioned above (overtraining). At the same time the
weaker relation of filter-based FS criterion functions
to particular classifier accuracy may help better gen-
eralization. But these effects can be hardly judged be-
fore the building of classification system has actually
been accomplished.

In the following we will focus only on wrapper-
based FS. Wrapper-based FS can be accomplished
(and accordingly its effect can be evaluated) using one
of the following methods:

• Re-substitution – In each step of the FS algorithm
all data is used both for classifier training and test-
ing. This has been shown to produce strongly op-
timistically biased results.

• Data split – In each step of the FS algorithm the
same part of the data is used for classifier training
and the other part for testing. This is the correct
way of classifier performance estimation, yet it is
often not feasible due to insufficient size of avail-
able data or due to inability to prevent bias caused
by unevenly distributed data in the dataset (e.g.,
it may be difficult to ensure that with two-modal
data distribution the training set won’t by coinci-
dence represent one mode and the testing set the
other mode)

• 1-Tier Cross-Validation (CV) – Data is split to
several parts. Then in each FS step a series of
tests is performed, with all but one data part used
for classifier training and the remaining part used
for testing. The average classifier performance is
then considered to be the result of FS criterion
evaluation. Because in each test a different part
of data is used for testing, all data is eventually
utilized, without actually testing the classifier on
the same data on which it had been trained. This is
significantly better than re-substitution, yet it still
produces optimistically biased results because all
data is actually used to govern the FS process.

• Leave-one-out – can be considered a special case
of 1-Tier CV with the finest data split granularity,
thus the number of tests in one FS step is equal
to the number of samples while in each test all but
one sample are used for training with the one sam-
ple used for testing. This is computationally more
expensive, better utilizes the data, but suffers the
same problem of optimistic bias.

• 2-Tier CV – Defined to enable less biased esti-

mation of final classifier performance than it is
possible with 1-Tier CV. The data is split to sev-
eral parts, FS is then performed repeatedly in 1-
Tier CV manner on all but one part, which is
eventually used for classifier accuracy estimation.
This process yields a sequence of possibly differ-
ent feature subsets, thus it can be used only for
assessment of FS method effectivity and not for
actual determination of the best subset. The av-
erage classifier performance on independent test
data parts is then considered to be the measure of
FS method quality. This is computationally de-
manding.

In our experiments we accept 2-Tier CV as satisfac-
tory for the purpose of FS methods performance eval-
uation and comparison. Due to the fact that 2-Tier CV
yields a series of possibly different feature subsets,
we define an additional measure to be calledconsis-
tency, that expresses the stability, or robustness of FS
method with respect to various data splits.
Definition: Let Y = { f1, f2, . . . , f|Y|} be the set of all
features and letS = {S1,S2, . . . ,Sn} be a system of
n> 1 feature subsetsSj = { fi |i = 1, . . . ,d j , fi ∈Y,d j ∈
〈1, |Y|〉}, j = 1, . . . ,n. DenoteF f the system of sub-
sets inS containing featuref , i.e.,

F f = {S|S∈ S , f ∈ S}. (1)

LetFf be the number of subsets inF f andX the subset
of Y representing all features that appear anywhere in
systemS , i.e.,

X = { f | f ∈Y,Ff > 0}. (2)

Then theconsistency C(S ) of feature subsets in sys-
temS is defined as:

C(S ) =
1
|X| ∑

f∈X

Ff −1
n−1

. (3)

Properties ofC(S ):
1. 0≤C(S ) ≤ 1.

2. C(S ) = 0 if and only if all subsets inS are disjunct
from each other.

3. C(S ) = 1 if and only if all subsets inS are identi-
cal.

The higher the value, the more similar are the subsets
in system to each other. ForC(S ) ≈ 0.5 on average
each feature present inS appears in about half of all
subsets. When comparing FS methods, higherconsis-
tencyof subsets produced during 2-Tier CV is clearly
advantageous. However, it should be considered a
complementary measure only as it does not have any
straight relation to the key measure of classifier gen-
eralization ability.
Remark: In experiments, if the best performing FS
method also produces feature subsets with highcon-
sistency, its superiority can be assumed well founded.
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3 EXPERIMENTS

To illustrate the differences between simpler and more
complex FS methods we have collected experimental
results under various settings: for two different clas-
sifiers, three FS search algorithms and eight datasets
with dimensionalities ranging from 13 to 65 and num-
ber of classes ranging from 2 to 6. We used 3
different mammogram datasets as well as wine and
wave datasets from UCI Repository (Asuncion and
Newman, 2007), satellite image dataset from ELENA
database (ftp.dice.ucl.ac.be), speech data from British
Telecom and sonar data (Gorman and Sejnowski,
1988). For details see Tables 1 to 8.

Note that the choice of classifier and/or FS setup
may not be optimal for each dataset, thus the reported
results may be inferior to results reported in the liter-
ature; the purpose of our experiments is mutual com-
parison of FS methods only. All experiments have
been done with 10-fold Cross-Validation used to split
the data into training and testing parts (to be denoted
“Outer CV” in the following), while the training parts
have been further split by means of another 10-fold
CV into actual training and validation parts for the
purpose of feature selection and classifier training (to
be denoted “Inner CV”).

The application of SFS and SFFS was straightfor-
ward. The OS algorithm as the most flexible proce-
dure has been used in two set-ups: slower random-
ized version and faster deterministic version. In both
cases thecycle depthset to 1 [see (Somol and Pudil,
2000) for details]. The randomized version, denoted
in the following as OS(1,r3), is called repeatedly with
random initialization as long as no improvement has
been found in last 3 runs. The deterministic version,
denoted as OS(1,IB) in the following, is initialized by
means of Individually Best (IB) feature selection.

The problem of determining optimal feature sub-
set size was solved in all experiments by brute force.
All algorithms were applied repeatedly for all possi-
ble feature sizes whenever needed. The final result
has been determined as that with the highest classi-
fication accuracy (and lowest subset size in case of
ties).

3.1 Notes on Obtained Results

All tables clearly show that more modern methods
are capable of finding criterion values closer to op-
timum – see column Inner-CV in each table.

The effect pointed out by Reunanen (Reunanen,
2003) of the simple SFS outperforming all more com-
plex procedures (regarding the ability to generalize)
takes place in Table 4, column Outer-CV, with Gaus-

sian classifier. Note the lowconsistencyin this case.
Conversely, Table 2 shows no less outstanding per-
formance of OS with 3-Nearest Neighbor classifier
(3-NN) with betterconsistencyand smallest subsets
found, while Table 3 shows top performance of SFFS
with both Gaussian and 3-NN classifiers. Although it
is impossible to draw decisive conclusions from the
limited set of experiments, it should be of interest to
extract some statistics (all on independent test data –
results in the column Outer-CV):

• Best result among FS methods for each given clas-
sifier: SFS 11×, SFFS 17×, OS 11×.

• Best achieved overall classification accuracy for
each dataset: SFS 1×, SFFS 5×, OS 2×.

Average classifier accuracies:

• Gaussian: SFS 0.652, SFFS 0.672, OS 0.663.

• 1-NN: SFS 0.361, SFFS 0.361, OS 0.349.

• 3-NN: SFS 0.762, SFFS 0.774, OS 0.765.

4 DISCUSSION AND
CONCLUSIONS

With respect to FS we can distinguish the follow-
ing entities which all affect the resulting classifica-
tion performance: search algorithms, stopping crite-
ria, feature subset evaluation criteria, data and classi-
fier. The impact of the FS process on the final classi-
fier performance (with our interest targeted naturally
at its generalization performance, i.e., its ability to
classify previously unknown data) depends on all of
these entities.

When comparing pure search algorithmsas such,
then there is enough ground (both theoretical and ex-
perimental) to claim that newer, often more complex
methods, have better potential of finding better solu-
tions. This often follows directly from the method
definition, as newer methods are often defined to im-
prove some particular weakness of older ones. (Un-
like IB, SFS takes into account inter-feature depen-
dencies. Unlike SFS, +L-R does not suffer the nesting
problem. Unlike +L-R, Floating Search does not de-
pend on pre-specified user parameters. Unlike Float-
ing Search, OS may avoid local extremes by means of
randomized initialization etc.) Better solution, how-
ever, means in this context merely being closer to op-
timum with respect to the adopted criterion. This may
not tell much about final classifier quality, while cri-
terion choice has proved to be a considerable problem
in itself. Vast majority of practically used criteria have
only insufficient relation to correct classification rate,
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Table 1: Classification performance as result of wrapper-based Feature Selection on wine data.

Winedata: 13 features, 3 classes containing 59, 71 and 48 samples, UCI Repository
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss

Gaussian SFS 0.599 0.017 0.513 0.086 3.1 1.221 0.272 00:00:00.54
SFFS 0.634 0.029 0.607 0.099 3.9 1.136 0.370 00:00:02.99
OS(1,r3) 0.651 0.024 0.643 0.093 3.1 0.539 0.463 00:00:34.30

1-NN SFS 0.355 0.071 0.350 0.064 1 0 1 00:00:00.98
scaled SFFS 0.358 0.073 0.350 0.064 1 0 1 00:00:02.27

OS(1,r3) 0.285 0.048 0.269 0.014 1.1 0.3 0.5 00:00:15.61
3-NN SFS 0.983 0.005 0.960 0.037 6.5 1.118 0.545 00:00:01.10
scaled SFFS 0.986 0.005 0.965 0.039 6.6 0.917 0.5 00:00:03.75

OS(1,r3) 0.986 0.004 0.955 0.035 6.1 0.7 0.505 00:00:45.68

Table 2: Classification performance as result of wrapper-based Feature Selection on mammogram data.

Mammogramdata, 65 features, 2 classes containing 57 (benign) and 29 (malignant) samples, UCI Rep.
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss

Gaussian SFS 0.792 0.028 0.609 0.101 9.6 3.382 0.156 00:12:07.74
SFFS 0.842 0.030 0.658 0.143 12.8 2.227 0.179 00:46:59.06
OS(1,IB) 0.795 0.017 0.584 0.106 7.2 2.638 0.139 01:29:10.24

1-NN SFS 0.335 0.002 0.337 0.024 1 0 1 00:00:30.05
scaled SFFS 0.335 0.002 0.337 0.024 1 0 1 00:00:59.72

OS(1,IB) 0.335 0.002 0.337 0.024 1 0 1 00:01:45.63
3-NN SFS 0.907 0.032 0.856 0.165 15.3 6.001 0.361 00:00:31.10
scaled SFFS 0.937 0.017 0.896 0.143 7.7 3.770 0.206 00:03:03.16

OS(1,IB) 0.935 0.014 0.907 0.119 5.3 0.781 0.543 00:04:18.10

Table 3: Classification performance as result of wrapper-based Feature Selection on sonar data.

Sonardata, 60 features, 2 classes containing 103 (mine) and 105 (rock) samples, Gorman & Sejnowski
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss
Gaussian SFS 0.806 0.019 0.628 0.151 20.2 12.156 0.283 00:08:41.83

SFFS 0.853 0.016 0.656 0.131 22.8 8.738 0.326 01:51:46.31
OS(1,IB) 0.838 0.018 0.649 0.066 21.5 10.366 0.315 03:36:04.92

1-NN SFS 0.511 0.004 0.505 0.010 1 0 1 00:01:51.78
scaled SFFS 0.511 0.004 0.505 0.010 1 0 1 00:03:10.47

OS(1,IB) 0.505 0.001 0.505 0.010 1 0 1 00:08:06.63
3-NN SFS 0.844 0.025 0.618 0.165 15.2 7.139 0.273 00:02:15.84
scaled SFFS 0.870 0.016 0.660 0.160 18.9 7.120 0.293 00:12:26.01

OS(1,IB) 0.864 0.016 0.622 0.151 15.8 5.474 0.247 00:25:55.39

while their relation to classifier generalization perfor-
mance can be put into even greater doubt.

When comparing feature selection methods as
a whole (under specific criterion-classifier-data set-
tings) the advantages of more modern search algo-
rithms may diminish considerably. Reunanen (Re-
unanen, 2003) points out, and our experiments con-
firm, that a simple method like SFS may lead to better
classifier generalization. The problem we see with the
ongoing discussion is that this is often claimed to be

the general case. But this is not true, as confirmed by
our experiments.

According to our experiments the “better” meth-
ods (being more effective in optimizing criteria) also
tend to be “better” with respect to final classifier gen-
eralization ability, although this tendency is by no
means universal and often the difference is negligi-
ble. No clear qualitative hierarchy can be recognized
among standard methods, perhaps with the excep-
tion of mostly inferior performance of IB (not shown
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Table 4: Classification performance as result of wrapper-based Feature Selection on mammogram data.

WPBCdata, 31 features, 2 classes containing 151 (nonrecur) and 47 (recur) samples, UCI Repository
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss

Gaussian SFS 0.807 0.011 0.756 0.088 9.2 4.534 0.241 00:00:21.24
SFFS 0.818 0.012 0.698 0.097 15.4 5.731 0.441 00:04:07.81
OS(1,r3) 0.826 0.010 0.682 0.062 12.6 5.219 0.356 00:34:07.20

1-NN SFS 0.251 0.020 0.237 0.018 1 0 1 00:00:14.93
scaled SFFS 0.251 0.020 0.237 0.018 1 0 1 00:00:39.71

OS(1,r3) 0.332 0.021 0.237 0.018 7.3 4.776 0.169 00:03:19.70
3-NN SFS 0.793 0.013 0.712 0.064 9.4 5.869 0.226 00:00:15.56
scaled SFFS 0.819 0.008 0.722 0.086 11.7 4.797 0.322 00:01:48.94

OS(1,r3) 0.826 0.007 0.687 0.083 11 3.550 0.325 00:14:44.24

Table 5: Classification performance as result of wrapper-based Feature Selection on mammogram data.

WDBCdata, 30 features, 2 classes containing 357 (benign) and 212(malignant) samples, UCI Rep.
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss

Gaussian SFS 0.962 0.007 0.933 0.039 10.8 6.539 0.303 00:00:22.21
SFFS 0.972 0.005 0.942 0.042 10.6 2.653 0.36 00:03:24.90
OS(1,r3) 0.973 0.004 0.943 0.039 10.3 2.147 0.366 00:36:36.49

1-NN SFS 0.373 0.000 0.373 0.004 1 0 1 00:01:33.07
scaled SFFS 0.421 0.022 0.373 0.004 1 0 1 00:03:26.00

OS(1,r3) 0.435 0.001 0.373 0.004 7.6 2.871 0.202 00:25:31.84
3-NN SFS 0.981 0.002 0.967 0.020 15.3 4.451 0.456 00:01:32.19
scaled SFFS 0.983 0.001 0.970 0.019 13.7 4.220 0.414 00:08:16.72

OS(1,r3) 0.985 0.002 0.959 0.025 13.4 3.072 0.421 01:41:02.62

Table 6: Classification performance as result of wrapper-based Feature Selection on speech data.

Speechdata, 15 features, 2 classes containing 682 (yes) and 736 (no) samples, British Telecom
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss
Gaussian SFS 0.773 0.008 0.770 0.052 9.6 0.917 0.709 00:00:03.28

SFFS 0.799 0.008 0.795 0.042 9.3 0.458 0.684 00:00:20.51
OS(1,r3) 0.801 0.008 0.793 0.041 9.5 0.5 0.642 00:02:46.16

1-NN SFS 0.522 0.001 0.519 0.002 1 0 1 00:01:27.25
scaled SFFS 0.521 0.001 0.519 0.002 1 0 1 00:03:07.95

OS(1,r3) 0.556 0.011 0.519 0.002 8.6 2.577 0.526 00:22:55.49
3-NN SFS 0.946 0.003 0.935 0.030 7 1.483 0.487 00:01:33.55
scaled SFFS 0.948 0.003 0.939 0.030 6.7 1.1 0.509 00:05:54.57

OS(1,r3) 0.949 0.003 0.937 0.029 7 1.095 0.537 01:08:39.20

here). It has been shown that different methods be-
come the best performing tools in different contexts,
with no reasonable way of predicting the winner in
advance (note, e.g., OS in Table 1 – gives best result
with Gaussian classifier but worst result with k-NN).

Our concluding recommendation can be stated as
follows: only in the case of strongly limited time
should one resort to the simplest methods. Whenever
possible try variety of methods ranging from SFS to
more complex ones. If one method only has to be cho-

sen, than we would stay with Floating Search as the
best general compromise between performance, gen-
eralization ability and search speed.

4.1 Quality of Criteria

The performance question of more complex FS meth-
ods is directly linked to another question: How well
do the available criteria describe the quality of evalu-
ated subsets ? The contradicting experimental results
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Table 7: Classification performance as result of wrapper-based Feature Selection on satellite land image data.

Satimagedata, 36 features, 6 classes with 1072, 479, 961, 415, 470 and1038 samples, ELENA database
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss

Gaussian SFS 0.509 0.016 0.516 0.044 19 7 0.643 00:05:21.77
SFFS 0.525 0.011 0.528 0.034 13.7 3.743 0.474 00:41:25.60
OS(1,IB) 0.527 0.010 0.517 0.055 12.2 3.311 0.410 01:57:06.71

1-NN SFS 0.234 0.000 0.234 0.001 1.6 1.2 0.244 03:05:20.63
scaled SFFS 0.234 0.000 0.234 0.001 1 0 0.444 08:00:19.17

OS(1,IB) 0.234 0.000 0.217 0.001 1.2 0.6 0.222 19:32:09.52
3-NN SFS 0.234 0.000 0.234 0.001 1 0 1 03:16:08.09
scaled SFFS 0.234 0.000 0.234 0.001 1 0 1 07:51:08.98

OS(1,IB) 0.234 0.000 0.234 0.001 1.1 0.3 0.296 19:09:44.29

Table 8: Classification performance as result of wrapper-based Feature Selection on wave data.

Waveformdata, 40 features, 3 classes containing 1692, 1653 and 1655 samples, UCI Repository
Inner 10-f. CV Outer 10-f. CV Subset Size Consis- Run Time

Classifier FS Method Mean St.Dv. Mean St.Dv. Mean St.Dv. tency h:m:s.ss

Gaussian SFS 0.505 0.002 0.493 0.015 2.1 0.3 0.222 00:08:38.86
SFFS 0.506 0.003 0.492 0.016 2.4 0.663 0.185 00:42:36.39
OS(1,IB) 0.506 0.002 0.489 0.015 2.7 1.005 0.222 01:57:58.04

1-NN SFS 0.356 0.009 0.331 0.000 1 0 1 07:29:40.76
scaled SFFS 0.356 0.009 0.331 0.000 1 0 1 16:09:52.71

OS(1,IB) 0.331 0.000 0.331 0.000 1 0 1 35:55:50.53
3-NN SFS 0.826 0.002 0.810 0.024 17.4 2.332 0.411 08:08:17.25
scaled SFFS 0.829 0.003 0.808 0.020 17.4 1.020 0.475 38:46:26.60

OS(1,IB) 0.830 0.002 0.816 0.016 17.1 2.022 0.593 95:12:19.24

seem to suggest, that the criterion used (classifier ac-
curacy on testing data in this case) does not relate well
enough to classifier generalization performance. Al-
though we do not present any filter-based FS results
here, the situation with filters seems similar. Thus, un-
even performance of more complex FS methods may
be viewed as a direct consequence of insufficient cri-
teria. In this view it is difficult to claim that more
complex FS methods are problematic per se.

4.2 Does It Make Sense to Develop New
FS Methods?

Our answer is undoubtedly yes. Our current experi-
ence shows that no clear and unambiguous qualita-
tive hierarchy can be established within the existing
framework of methods, i.e., although some methods
perform better than others more often, this is not the
case always and any method can prove to be the best
tool for some particular problem. Adding to this pool
of methods may thus bring improvement, although it
is more and more difficult to come up with new ideas
that have not been utilized before. Regarding the per-
formance of search algorithms as such, developing

methods that yield results closer to optimum with re-
spect to any given criterion may bring considerably
more advantage in future, when better criteria may
have been found to better express the relation between
feature subsets and classifier generalization ability.
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